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ABSTRACT
User identification across domains draws lots of research ef-
fort in recent years. Although most of existing works focus
on user identification in a single space, in this paper, we first
try to identify users by fusing their activities in cyber space
and physical space, which helps us obtain a comprehensive
understanding about users’ online behaviours as well as of-
fline visitation. Out profound insight to tackle this problem
is that we can build a connection between the cyber space
and the physical space with the stable location distribution
of IP addresses. Thus, we propose a novel framework for
user identification in cyber-physical space, which consists
of three key steps: 1) modeling the location distribution of
each IP address; 2) computing the co-occurrence with an
inverted index to reduce the space and time cost; and 3) a
learning-to-rank tactic to fuse user’s features shared in both
spaces to improve the accuracy. We conduct experiments to
identify individual users from mobile query logs (generated
in cyber space) and trajectory data (generated in physical
space) to demonstrate the efficiency and effectiveness of our
framework.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining; Spatial databases and GIS

Keywords
User identification; spatial data mining; cyber-physical s-
pace; spatial index.

1. INTRODUCTION
Obtaining a deep and comprehensive understanding of

each individual user from the big data is an intriguing prob-
lem which brings benefits to users and service providers. The

∗Haishan Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2997017

problem has been studied in two different spaces in recent
years, including user identification in cyber space [19, 10,
18, 12, 9, 23] as well as that from heterogeneous trajectory
generated in physical space [22, 16, 2].

In this paper, we investigate another challenging prob-
lem to identify a user from heterogeneous data generated
in cyber and physical spaces to obtain an enriched under-
standing of the user, which has a wide range of applications.
For example, authors in [14] demonstrate that their recom-
mendation model with fusing the online and offline data can
increase the customer purchase ratio significantly.

Especially, in this paper, we make a case study on link-
ing anonymous users in mobile query logs and trajectories.
For mobile queries, the users may search something with a
mobile browser without login and we can only get a cook-
ie ID. For trajectories from the mobile applications such as
Google Maps and Baidu Maps, we can get a device ID for
each trajectory. The aim is to link the cookie ID and device
ID for the same user when he has not logged in.

Figure 1: Flowchart of the UNICORN framework

Here we propose a novel and practical user identification
framework in cyber-physical space, called UNICORN, for
linking users in heterogeneous dataset in cyber-physical s-
pace. The flowchart is shown in Figure 1 which consists of
three key steps. The first step is the IP locationlization,
where we map the IP addresses into location areas, trans-
ferring the query data into location data. The second step
is to compute the co-occurrence between the trajectory and
the IP locations to find the candidate pairs for the linkage.
Finally, for the candidate pairs, we use a learning-to-rank
(LTR) [13] model to utilize the user’s all features shared
in the cyber space and physical space to obtain a finalized
best-match pair between a cookie ID and a device ID.

In summary, our main research contributions include:

• We first study the user identification problem in the
cyber-physical space. We investigate the problem on
the mobile query logs and the trajectory data, which
are typical data generated in the cyber-physical space.



• We propose a novel and practical framework, called
UNICORN, to solve the problem. With an inverted
index, the framework can efficiently process real-world
large dataset on the Map-Reduce platform.

• We conduct evaluation on a real-world dataset to demon-
strate the effectiveness and efficiency of our framework.

2. PROBLEM STATEMENT
The purpose is to identify the same users from two dataset-

s, which include:

• Trajectory data: A set of user trajectories, which is

SL = {〈idLi , {pi,1, · · · , pi,end}〉}.

idLi is the device ID of the i-th user, and there is
usually one ID for each mobile device. pi,j is the
j-th node in the trajectory of ui, and each node is
pi,j = (xLi,j , y

L
i,j , t

L
i,j), where xLi,j , y

L
i,j are the longitude-

latitude coordinates, and tLi,j is the timestamp.

• Mobile query log data: The set of query logs from the
search box of a search engine on mobile phones. By
merging the searching records for the same ID, we can
get a set of IDs and query logs related to the IDs:

SQ = {〈idQi , {ri,1, · · · , ri,end}〉}.

idQi is the cookie ID, and there may be multiple cookie
IDs for a user. Each record ri,j is from a query sent by

uQ
i , and ri,j = (IPQ

i,j , t
Q
i,j , s

Q
i,j). IPQ

i,j is the IP address,

and tQi,j is the timestamp. sQi,j is made up of some extra
information, such as the query string, the device OS
and the mobile phone model. sQi,j may also contain the

location (xQi,j , y
Q
i,j), but different from the trajectory

data, locations may be inaccessible for some queries.

For each pair of IDs from the two datasets, the aim is to
find whether they belong to the same user. We will propose
a metric to measure the weighted co-occurrence between the
spatial distribution of them. Our solution consist of three
parts. Firstly, we model the location distribution of the IP
addresses and locationlize the query data. Secondly, we use
the inverted index to compute the candidate ID pairs. Final-
ly, we use a learning-to-rank (LTR) approach to considering
more features to get a more accurate prediction.

3. THE UNICORN FRAMEWORK

3.1 Extending IP Addresses to Locations
In order to link the query data in cyber space and the

trajectory data in physical space, our novel idea is to find
out the location distribution for each available IP address, so
that we can predict the location where a query was sent by
the IP address if there were no location coordinates attached
with the query record.

After analyzing the location distribution of some IP ad-
dresses, we find there are two types of distributions (Figure
2), including the wide-ranged distribution and the central-
ized distribution. If an IP address follows a centralized dis-
tribution, the locations of the users with this IP address can
be predicted as the centers of these central areas. To find
out the IP addresses with centralized distribution, we use
the DBSCAN algorithm [8] to cluster on the IP locations.

(a) (b)

Figure 2: Wide-ranged (a) and centralized (b) distributions

Let I1, I2, · · · , Ik be the k different clusters which we ob-
tain, and O be the remaining location points not in any
clusters. For each cluster Ij , the center g(Ij) is the mean
point of Ij . The mean radius r(Ij) of Ij is defined as the root
mean square of the distances between g(Ij) and all points in
Ij . Then for cluster Ij , we define its weight in SIP to be:

w(Ij , SIP) =
|Ij |
|SIP|

· 1

1 + αr2(Ij)
,

which is the confidence that the query is sent from gIj . In
practice, clusters with w(Ij , SIP) less than some threshold
w0 will be ignored.

Following this approach, for a mobile query record without
precise location information, we can predict several possible
locations for it by IP clustering, together with the prediction
confidence for these locations.

3.2 Computing Similarities
In order to match the user IDs from trajectory and online

query records, in this section, we propose to use a TF-IDF-
based metric to compute weighted co-occurrence similarities
between each pair of these cookie IDs and device IDs. Since
the computation of all the user similarities takes up a com-
plexity of O(n2), we use an inverted index based on the
Map-Reduce framework to retrieve the top-K similar device
IDs for each search query cookie ID.

The mobility trajectories will not be appropriate to be
used directly. According to [11, 2], there may be a large
number of moving points and noise points in the trajectories,
which would be lack of effective information and cause a
waste of computation resources. Before using the trajectory
data, we will remove the moving points with high speeds.

In this framework, we turn the location records into vec-
tors by the TF-IDF model [17], and use the cosine similarity
to represent for the similarity of two trajectories. We can
split the city into small grids, each point (x, y) mapped into
a grid (b x

sg
c, b y

sg
c). Consider each grid gj to be a word, and

each trajectory Ti to be a document. The appearance of the
user in gj can be regarded as the appearance of the word in
the document. Then we define the term frequency (TF) and
the inverse document frequency (IDF) to be:

• tf(gj , Ti) = log(1 + fi,j), where fi,j is the frequency
that grid gj appears in the trajectory Ti.

• idf(gj , S) = 1
log(1+|{i|fi,j>0}|) .

Then the TF-IDF value for grid gj in trajectory Ti is
tf-idf(gj , Ti) = tf(gj , Ti) · idf(gj). Given the trajectory Ti,
we can represent is as a vector

v(Ti) = (tf-idf(g1, Ti), tf-idf(g2, Ti), · · · , tf-idf(g|G|, Ti)),



and we use its normalized vector v∗(Ti) = v(Ti)
‖v(Ti)‖

. After

that we can use the cosine similarity to represent for the
similarity of two trajectories.

Since it takes an O(n2) complexity to compute the sim-
ilarity between each pair of vectors for the users from the
two datasets (location data and mobile query data), we have
built an inverted index to reduce the complexity. Now that
we have two sets of vectors:

• D = {v1, v2, · · · , v|D|}, where vk = (vk,1, · · · , vk,N )
is a nonnegative vector representing for the location
distribution for some device ID represented by idLk .

• K = {u1, u2, · · · , u|K|}, where uj = (uj,1, · · · , uj,N )
is a nonnegative vector representing for the location
distribution for some cookie ID represented by idQj .

The goal of this step is: For each cookie ID idQj , we want to
find K different devices IDs such that their TF-IDF vectors
have the top-K largest cosine similarities with uj among all
device IDs.

According to the uniqueness bound of human mobility
introduced in [6], the probability that a single point could be
used to identify a unique person is small. Then we will only
consider the case that the two user IDs have co-occurrences
in at least two grids. We could build an inverted index in
which each key is a grid cell. Here we only consider the pairs
of IDs who have appeared in at least two different grid cells,
and the total time and space requirement can be reduced a
lot in this way. We have used a solution similar to [15], which
consist of two steps. In the first step, we build an inverted
index from the vectors for the user IDs. For each of nonzero
entry in one user’s vector vk, we generate a key-value pair,
where the key is the grid cell and the value is made up of
the user ID and the entry weight. Then we merge all the
users that appears in the same grid cell. In the second step,
we compute the similarity between each pairs of IDs with
co-occurrences. We find all the user pairs that shares the
same grid, and then for each pair of users, we find all the
grids that they have co-appeared, and then compute the
cosine similarity for the pairs of users which share at least
two grids. At last, for each cookie ID, we keep K device IDs
with the largest similarities with the cookie ID.

3.3 Learning-to-rank
Besides the location information, we have some extra in-

formation shared between the cyber space and the physical
space, such as IP addresses, operating systems and phone
models. After getting the top-K candidates via TF-IDF
similarities, it will be better to take these features into con-
sideration than only using the TF-IDF similarities. In our
framework, in order to achieve this purpose, we use the Gra-
dient Boosting Decision Tree (GBDT) algorithm [4] to im-
plement a learning-to-rank (LTR) model [13], in order to
get a general ranking for all the top-K device IDs related to
the same cookie ID by utilizing different features. The fea-
tures that we use include the TF-IDF similarity, the number
of co-occurrence grids, the maximum distance between co-
occurrence grids, and the similarities between the sets of the
extra information we have described. After considering all
these features in the LTR model, we can get a more accurate
prediction for the best matched IDs.

4. EXPERIMENTS

Our experiments are based on the mobile query logs and
trajectory data in Harbin, China, during December 2015.
In our experiments, we only use the IDs which are active
enough. The mobile query log data is obtained from the
search query logs of the Baidu search box for the mobile
phones. 40.7% of all the query records have location in-
formation. There are totally 2, 341, 283 active cookie IDs
and 270, 570, 204 search query records. The trajectory data
is obtained from the location records from a mobile appli-
cation “Mobile Baidu”1. There are totally 825, 596 active
device IDs and 387, 544, 953 location records. The ground
truth we used in the evaluation comes from records of ac-
count logins, such that if a device ID and a cookie ID have
logged in with the same user account, we consider this pair
as the same user, which could be used as a ground truth.

Our framework is implemented as a series of Hadoop stream-
ing jobs written in Python 2.7, and the experiments have
been running on the Hadoop Map-Reduce cluster [7] with
3, 000 nodes running in parallel for each job.

(a) (b)

Figure 3: Running time (a) and space cost (b) for different
indexes

We sample one fifth of the users who were active in the
whole year of 2015 to evaluate the running time and space
cost, which is shown in Figure 3. From Figure 3 (a), we can
see that the running time increases with the amount of da-
ta. The main reason that the running time grows faster than
O(n2) when the dataset gets larger (e.g., 90% and 100%) is
that the problem of extreme length of some posting lists
leads to imbalance problem, and these huge lists cause in-
stability to the Hadoop cluster such that some subtasks will
keep crashing and restarting, which takes more time. From
Figure 3 (b), we can see that the maximum space require-
ment grows quadratically with the size of the dataset.

By setting up different values for the threshold of the ob-
jective value of LTR, we can get a precision-recall curve
for the prediction. We have compared the precision-recall
curve of our framework with some comparators, which is
shown in Figure 4. These include some modifications of U-
NICORN, such as: (1) UNICORN with location-based LTR
(UNICORN-L): The UNICORN framework without using
IP addresses, mobile phone OSes and phone models in L-
TR. (2) UNICORN without LTR (UNICORN-S): Directly
using the TF-IDF similarities without using LTR in the U-
NICORN framework. There are also some state-of-the-art
framework for matching the users in two trajectory dataset-
s, such as: (3) Signal-Jaccard co-filtering introduced in [2],
matching the users by co-filtering the ID pairs with signal-

1http://xbox.m.baidu.com/wuxian/
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Figure 4: Comparing UNICORN with its competitors by
precision-recall curve

based similarity and weighted Jaccard similarity; (4) Signal-
based filtering which is similar to (3), but Jaccard similarity
is not used. From Figure 4, we can see that our framework
has a significant advantage over these comparators, which
indicates the effectiveness of our framework.

5. RELATED WORK
Our work in this paper is closely related to the topic of the

user identification problem and similarity search technique
based on human mobility data. The method for user identifi-
cation by matching up similar user trajectories from datasets
from different resources has been introduced in [2], which has
used multi-layer grid indexing in filtering and co-occurrence
signals in similarity computation. Authors in [16, 5, 3] have
described methods for user identification based on similari-
ty search among trajectories. The author in [20] raised an
idea of attaining the lower bounds of similarities during the
similarity searching process. Our algorithm is also related
with some work on spatial indexing such as [21]. For user
identification in cyber space, the most popular problem is
how to link and identify the same users from multiple social
networks [19, 10, 18, 12, 9, 23].

Another related topic is all-pair similarity searching for
vectors. The authors in [1] have proposed an optimization
algorithm for all-pair similarity searching, but it is not suit-
able to run on distributed systems. Metwally et al. [15]
have proposed a “V-SMART-Join” framework for the Map-
Reduce system, which is a common method for all-pair simi-
larity problems. However, in our problem, the step of match-
ing pairs of IDs in the same inverted index will cause too
much output data, and simply dropping big indexes will
cause serious information loss.

6. CONCLUSIONS
In this paper, we develop a framework to process the user

identification problem between the datasets from the cyber
and the physical spaces. At first, for the online mobile query
logs without exact location information, we have developed
a method to enrich them with the location data by deduc-
ing the IP locations after clustering. Then we measure the
co-occurrence by TF-IDF metric between the location distri-
butions of the query records and trajectories by building the
inverted index. At last we use a learning-to-rank approach to
figuring out the matched ID among several possible similar
IDs. Our experiments have demonstrated the efficiency and

effectiveness of our framework on real-world mobile query
log data and trajectory data.
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